Green Synthesis of Ag/ATP Catalysts Using Clove Extract for Formaldehyde Elimination

Author:

Hu Yuan1ORCID,Chen Xin1,Miao Liqi1,Zhang Jing1,Zhai Ming1,Chen Dan12ORCID,Wang Xiaozhi12

Affiliation:

1. College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China

2. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China

Abstract

Compared with other methods, the synthesis of metal nanoparticles by metal ion reduction using plant extracts as raw materials has the advantages of low cost, simple synthesis and environmental friendliness, and has garnered significant attention. To achieve this effect, in the form of green synthetic nano silver (AgNP), we mixed AgNO3 with attapulgite (ATP) and stirred it with clove plant extract at 80 °C. By changing the dosage of clove extract, a series of new samples were prepared by the same method. The shape and size of the synthesized silver nanoparticles on catalysts were visualized by transmission electron microscope (TEM) observations. The particle size of the optimally prepared nanoparticles ranges from 1 to 9 nm with spherical or roughly spherical forms. The inductively coupled plasma (ICP) results further demonstrated the reducing effect of clove extract on Ag. Increasing the amount of clove extract could promote the formation and loading of Ag on ATP. An outstanding catalytic performance of Ag/ATP under HCHO outperformed that synthesized without clove extract. With the addition of clove extract, the catalytic performance was enhanced by more than 40% compared to no addition. Among different nanoparticles, the catalytic oxidation activity of HCHO was best when the volume ratio of clove extract to Ag was 10:1. Therefore, the green synthesis of Ag/ATP catalysts using clove extracts can be considered an environmentally benign, superior approach.

Funder

China Postdoctoral Science Foundation funded project

National Nature Science Foundation of China

Natural Science Fund for colleges and universities in Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3