Motion Planning of an Inchworm Robot Based on Improved Adaptive PSO

Author:

Wang Binrui,Wang Jianxin,Huang Zhenhai,Zhou Weiyi,Zheng Xiaofei,Qi Shunan

Abstract

Focusing on the motion energy consumption of a self-developed inchworm robot’s peristaltic gait, based on the “error tracking” of cubic polynomial programming in Cartesian space and seventh polynomial programming in joint space, we propose an optimal motion planning method of energy consumption considering both kinematic and dynamic constraints. Firstly, we offer a mathematical description of the energy consumption and space curve similarity operator. Secondly, we describe the mathematical models of the robot trajectory and path that were established in terms of their dynamics and kinematics. Then, we propose a motion planning method based on improved adaptive particle swarm optimization (PSO) to accelerate the convergence speed of the algorithm and ensure the accuracy of the model calculation. Finally, we outline the simulation test carried out to measure the inchworm-like robot’s creeping gait. The results show that the motion path obtained by using the planning method proposed in this paper is the one with the least energy consumption by the robot among all the comparison paths. Moreover, compared with other algorithms, it was found that the result obtained by using the algorithm proposed in this paper is the one with the shortest solution time and the lowest energy consumption under the same iteration times. The calculation results verify the feasibility and effectiveness of the planning method.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference27 articles.

1. Notice of the State Council Concerning the Issuance of Made in China 2025 [EB/OL]. (2015-05-08) [2021-02-12];The State Council

2. Artificial Intelligence for Long-Term Robot Autonomy: A Survey

3. Optimal Motion Planning for Minimizing Energy Consumption of Wheeled Mobile Robots;Datouo;Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO),2017

4. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve

5. Multi-objective Path Planning Based on An Improved GWO-WOA Method;Zhou;Proceedings of the 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3