Performance of a Novel Enhanced Sparrow Search Algorithm for Engineering Design Process: Coverage Optimization in Wireless Sensor Network

Author:

Liu RuiORCID,Mo Yuanbin

Abstract

Burgeoning swarm intelligence techniques have been creating a feasible theoretical computational method for the modeling, simulation, and optimization of complex systems. This study aims to increase the coverage of a wireless sensor network (WSN) and puts forward an enhanced version of the sparrow search algorithm (SSA) as a processing tool to achieve this optimization. The enhancement of the algorithm covers three aspects. Firstly, the Latin hypercube sampling technique is utilized to generate the initial population to obtain a more uniform distribution in the search space. Secondly, a sine cosine algorithm with adaptive adjustment and the Lévy flight strategy are introduced as new optimization equations to enhance the convergence efficiency of the algorithm. Finally, to optimize the individuals with poor fitness in the population, a novel mutation disturbance mechanism is introduced at the end of each iteration. Through numerical tests of 13 benchmark functions, the experimental results show that the proposed enhanced algorithm can converge to the optimum faster and has a more stable average value, reflecting its advantages in convergence speed, robustness, and anti-local extremum ability. For the WSN coverage problem, this paper established a current optimization framework based on the swarm intelligence algorithms, and further investigated the performance of nine algorithms applied to the process. The simulation results indicate that the proposed method achieves the highest coverage rate of 97.66% (on average) among the nine algorithms in the calculation cases, which is increased by 13.00% compared with the original sparrow search algorithm and outperforms other methods by 1.47% to 15.34%.

Funder

National Natural Science Foundation of China

Project of the Natural Science Foundation of Guangxi Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3