A Dam Safety State Prediction and Analysis Method Based on EMD-SSA-LSTM

Author:

Yang Xin1,Xiang Yan12,Wang Yakun1ORCID,Shen Guangze12ORCID

Affiliation:

1. Nanjing Hydraulic Research Institute, Nanjing 210029, China

2. The National Key Laboratory of Water Disaster Prevention, Nanjing 210029, China

Abstract

The safety monitoring information of the dam is an indicator reflecting the operational status of the dam. It is a crucial source for analyzing and assessing the safety state of reservoir dams, possessing strong real-time capabilities to detect anomalies in the dam at the earliest possible time. When using neural networks for predicting and warning dam safety monitoring data, there are issues such as redundant model parameters, difficulty in tuning, and long computation times. This study addresses real-time dam safety warning issues by first employing the Empirical Mode Decomposition (EMD) method to decompose the effective time-dependent factors and construct a dam in a service state analysis model; it also establishes a multi-dimensional time series analysis equation for dam seepage monitoring. Simultaneously, by combining the Sparrow Optimization Algorithm to optimize the LSTM neural network computation process, it reduces the complexity of model parameter selection. The method is compared to other approaches such as RNN, GRU, BP neural networks, and multivariate linear regression, demonstrating high practicality. It can serve as a valuable reference for reservoir dam state prediction and engineering operation management.

Funder

National Key R&D Program of China

Major science and technology project of the Ministry of Water Resources of China

Science and Technology Project of Yunnan Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3