Study on the Flow Behavior of 5052 Aluminum Alloy over a Wide Strain-Rate Range with a Constitutive Model Based on the Arrhenius Model Extension

Author:

Ma Huijuan123ORCID,Wang Peiliao123,Huang Xiang123,Mao Wenjie123,Gong Zhiang123,Zhang Mao4ORCID,Zhu Hui5

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China

3. Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan 430070, China

4. State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

5. Department of Mechanical Engineering, The University of Sheffield, Sheffield S1 3JD, UK

Abstract

The formability at room temperature and low speed limits the application of aluminum alloy, while high strain rates positively improve the formability of materials. The constitutive behaviors of materials under high strain rates or impact loadings are significantly different from those under quasi-static conditions, while few constitutive models consider the effect of the mobile dislocation and forest dislocation evolution on the dynamic strain aging (DSA) over a wide strain-rate range. The 5052 aluminum alloy, of which the primary source of strain-hardening is dislocation–dislocation interaction, is widely used in manufacturing automotive covering parts and is considered one of the most promising alloys. Therefore, this study conducts uniaxial tensile tests on AA5052-O under conditions of temperatures ranging from 293 K to 473 K and strain rates ranging from 0.001 s−1 to 3000 s−1, and compares the stress–strain relationships of AA5052-O under different conditions to illustrate the constitutive relationship affected by the dislocation evolution over a wide strain-rate range. The Arrhenius model based on the thermal activation mechanism is modified and extended by considering the effects of dynamic strain aging (DSA), drag stress, and the evolution of mobile dislocation and forest dislocation. Thus, a new physics-based constitutive model for AA5052-O is proposed, which can well reflect the change in strain-rate sensitivity with the strain rate increasing. The mobile dislocation density and total dislocation density are predicted with a modified Kubin–Estrin (KE) model, and the influences of variable mobile dislocation on DSA and dislocation drag are discussed as well. In order to verify the reliability of the new constitutive model, the dislocation densities of the specimens before and after deformation are obtained with TEM and XRD, which are in good agreement with the predicted values. This study also compares the newly proposed model with classic constitutive models using multiple statistical evaluation methods, which shows that the new physics-based constitutive model has not only more clear physical meanings for its parameters but also has a higher prediction accuracy.

Funder

Knowledge Innovation Program of Wuhan-Shuguang Project

National Natural Science Foundation of China

National Innovation and Entrepreneurship Training Program for College Students

Natural Science Foundation of Hubei Province

the 111 Project

Innovative Research Team Development Program of Ministry of Education of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3