PVDF Based Pressure Sensor for the Characterisation of the Mechanical Loading during High Explosive Hydro Forming of Metal Plates

Author:

Tartière Jérémie,Arrigoni MichelORCID,Nême Alain,Groeneveld Hugo,Van Der Veen Sjoerd

Abstract

High explosive hydro forming (HEHF) is a suitable technique for large metal plate forming. Manufacturing stages of such a part requires an adapted design of explosive charge configurations to define the mechanical loading exerted on the part. This mechanical loading remains challenging to be experimentally determined but necessary for predictive numerical simulation in the design of parts to form. Providing that the actual mechanical impulse would allow the neglecting of the modelling of the detonation stage, this considerably increases the computational time. The present work proposes an experimental method for obtaining the exerted mechanical loading by HEHF on the part to form. It relies on the development of low-cost sensor based on a polyvinyliden fluorid (PVDF) gauge. In addition to it, an analytical approach based on shock physics is proposed for the sensor signal interpretation. The method considers the multi-layer aspect of the sensor and its intrusiveness with respect to waves propagation. Measurements were repeated to assess their relevance and the reproducibility by using steel and aluminium anvils in HEHF. Numerical modelling in 2D plane geometry of the experiments was performed with two commercial hydrocodes. The comparison of mechanical impulses shows an agreement in terms of chronology but a noticeable difference in terms of amplitude, explained by mesh size and numerical diffusion.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3