Evaluating the Impacts of Flying Height and Forward Overlap on Tree Height Estimates Using Unmanned Aerial Systems

Author:

Grybas Heather,Congalton Russell G.ORCID

Abstract

Unmanned aerial systems (UASs) and structure-from-motion (SfM) image processing are promising tools for sustainable forest management as they allow for the generation of photogrammetrically derived point clouds from UAS images that can be used to estimate forest structure, for a fraction of the cost of LiDAR. The SfM process and the quality of products produced, however, are sensitive to the chosen flight parameters. An understanding of the effect flight parameter choice has on accuracy will improve the operational feasibility of UASs in forestry. This study investigated the change in the plot-level accuracy of top-of-canopy height (TCH) across three levels of flying height (80 m, 100 m, and 120 m) and four levels of forward overlap (80%, 85%, 90%, and 95%). A SenseFly eBee X with an Aeria X DSLR camera was used to collect the UAS imagery which was then run through the SfM process to derive photogrammetric point clouds. Estimates of TCH were extracted for all combinations of flying height and forward overlap and compared to TCH estimated from ground data. A generalized linear model was used to statistically assess the effect of parameter choice on accuracy. The RMSE (root-mean-square error) of the TCH estimates (RMSETCH) ranged between 1.75 m (RMSETCH % = 5.94%) and 3.20m (RMSETCH % = 10.1%) across all missions. Flying height was found to have no significant effect on RMSETCH, while increasing forward overlap was found to significantly decrease the RMSETCH; however, the estimated decrease was minor at 4 mm per 1% increase in forward overlap. The results of this study suggest users can fly higher and with lower levels of overlap without sacrificing accuracy, which can have substantial time-saving benefits both in the field collecting the data and in the office processing the data.

Funder

USDA National Institute of Food and Agriculture McIntire-Stennis Project

Publisher

MDPI AG

Subject

Forestry

Reference73 articles.

1. The Economic Imortance of New Hampshire’s Forest-Based Economy https://www.nefainfo.org/uploads/2/7/4/5/27453461/nefa13_econ_importance_nh_final_web.pdf

2. United Nations Environment Programme The State of the World’s Forests 2020,2020

3. Riparian forests can mitigate warming and ecological degradation of agricultural headwater streams

4. FOREST CARBON SINKS IN THE NORTHERN HEMISPHERE

5. Global progress toward sustainable forest management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3