Screening of Azotobacter, Bacillus and Pseudomonas Species as Plant Growth-Promoting Bacteria

Author:

Minuț MarianaORCID,Diaconu Mariana,Roșca MihaelaORCID,Cozma PetronelaORCID,Bulgariu LauraORCID,Gavrilescu MariaORCID

Abstract

In this study, bacteria from the genus of Azotobacter, Bacillus and Pseudomonas were isolated from the roots of Phaseolus vulgaris and used as plant growth-promoting bacteria for Sinapis alba L., Brassica napus L., Amaranthus retroflexus L., Linum usitatissimum L., Panicum miliaceum L. and Rumex patientia L. plants. The results showed that all three bacteria had different effects on plants growth considering both sterile and non-sterile soil. Bacillus sp. induced the greatest influence in terms of the root length of Sinapis alba L. grown in sterile soil (with 28%), while considering non-sterile soil, Pseudomonas sp. increased the root and shoot length by 11.43% and 25.15%, respectively, compared to the blank sample. Azotobacter sp. exerted the highest beneficial influence on Brassica napus L. growth in non-sterile soil, since the root and shoot lengths were stimulated with 27.64% and 52.60%, respectively, compared to uninoculated plants. Bacillus sp. had a positive effect on the growth of the shoot length of Amaranthus retroflexus L. (with 30.30% in sterile soil and 3.69% in non-sterile soil compared to the control). Azotobacter sp. stimulated the growth of the root length of Rumex patientia L. with 35.29% in sterile soil and also the shoot length of Panicum miliaceum L. in non-sterile soil by 20.51% compared to the control. Further, the roots and shoots of Linum usitatissimum L. grown in non-sterile soil and in the presence of Pseudomonas sp. increased by 178.38% and 15.08%, respectively, compared to the flax grown in sterile soil. Statistically, according to Tukey’s Honestly Significant Difference (HSD) test results, not all observed differences in plants grown with the selected bacteria are significantly different compared to the control.

Funder

Romanian National Authority for Scientific Research

Romanian Ministry of Education and Research

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference91 articles.

1. Characterization of heavy metal toxicity in some plants and microorganisms—A preliminary approach for environmental bioremediation;Diaconu;New Biotechnol.,2020

2. Metal contamination and bioremediation of agricultural soils for food safety and sustainability;Hou;Nat. Rev. Earth Environ.,2020

3. Hlihor, R.M., Cozma, P., and Gavrilescu, M. (2022). Sustainable Solutions for Environmental Pollution, Scrivener Publishing.

4. Enhancing phytoremediation of soils polluted with heavy metals;Gavrilescu;Curr. Opin. Biotechnol.,2022

5. Soil temperature profile investigation under arid climate of Kuwait using mechanistic and mixed models;Altamuiri;Environ. Eng. Manag. J.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3