A Fast Dense Feature-Matching Model for Cross-Track Pushbroom Satellite Imagery

Author:

Du Wen-LiangORCID,Li Xiao-Yi,Ye Ben,Tian Xiao-Lin

Abstract

Feature-based matching can provide high robust correspondences and it is usually invariant to image scale and rotation. Nevertheless, in remote sensing, the robust feature-matching algorithms often require costly computations for matching dense features extracted from high-resolution satellite images due to that the computational complexity of conventional feature-matching model is O ( N 2 ) . For replacing the conventional feature-matching model, a fast dense (FD) feature-matching model is proposed in this paper. The FD model reduces the computational complexity to linear by splitting the global one-to-one matching into a set of local matchings based on a classic frame-based rectification method. To investigate the possibility of applying the classic frame-based method on cross-track pushbroom images, a feasibility study is given by testing the frame-based method on 2.1 million independent experiments provided by a pushbroom based feature-correspondences simulation platform. Moreover, to improve the stability of the frame-based method, a correspondence-direction-constraint algorithm is proposed for providing the most favourable seed-matches/control-points. The performances of the FD and the conventional models are evaluated on both an automatic feature-matching evaluation platform and real satellite images. The evaluation results show that, for the feature-matching algorithms which have high computational complexity, their running time for matching dense features reduces from hours level to minutes level when they are operated on the FD model. Meanwhile, based the FD method, feature-matching algorithms can achieve comparable matching results as they achieved based on the conventional model.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3