Tool Wear Mechanism and Grinding Performance for Different Cooling-Lubrication Modes in Grinding of Nickel-Based Superalloys

Author:

Liang Chunyou1,Gong Yadong1,Zhou Linhu2,Qi Yang1,Zhang Huan1,Zhao Jibin3

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

2. ChangChun Railway Vehicles, ChangChun 130062, China

3. Technology Equipment and Intelligent Robot Laboratory, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, China

Abstract

Tool wear introduced during grinding nickel-based superalloys was identified as a significant factor affecting the production quality of aero-engine industries concerning high service performance and high precision. Moreover, uncertainties derived from the various cooling-lubrication modes used in grinding operations complicated the assessment of grinding preformation. Therefore, this work investigated the tool wear mechanisms in grinding nickel-based superalloys that adopted five cooling-lubrication modes and investigated how the wear behaviors affected grinding performance. Results showed that chip-deposits covered some areas on the tool surface under dry grinding and accelerated the tool failure, which produced the highest values of tangential force, 7.46 N, and normal force, 14.1 N. Wedge-shape fractures induced by indentation fatigue were found to be the predominant wear mechanism when grinding nickel-based superalloys under flood cooling mode. The application of minimum quantity lubrication-palm oil (MQL-PO), MQL-multilayer graphene (MQL-MG), and MQL-Al2O3 nanoparticles (MQL-Al2O3) formed lubricity oil-film on the tool surface, which improved the capacity of lubrication in the tool–workpiece contact zone and provided 37%, 30%, and 52% higher coefficient of friction than dry mode, respectively. The results of this study demonstrate that lubricated oil-film produced by MQL modes reduces the possibility of fractures of cubic boron nitride (CBN) grits to some extent.

Funder

National Natural Science Foundation of China Key

Fundamental Research Funds for the Central Universities

Shanghai Science and Technology Innovation Action Plan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3