Study of the Solder Characteristics of IGBT Modules Based on Thermal–Mechanical Coupling Simulation

Author:

Chen Jibing1ORCID,Liu Bowen1,Hu Maohui1,Huang Shisen1,Yu Shanji1,Wu Yiping2,Yang Junsheng1

Affiliation:

1. School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430000, China

2. School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China

Abstract

The insulated-gate bipolar transistor (IGBT) represents a crucial component within the domain of power semiconductor devices, which finds ubiquitous employment across a range of critical domains, including new energy vehicles, smart grid systems, rail transit, aerospace, etc. The main characteristics of its operating environment are high voltage, large current, and high power density, which can easily cause issues, such as thermal stress, thermal fatigue, and mechanical stress. Therefore, the reliability of IGBT module packaging has become a critical research topic. This study focuses on the damage of power device solder layers and applies heat transfer theory. Three typical solders for welding IGBTs (92.5Pb5Sn2.5Ag, Sn3.0Ag0.5Cu (SAC305), and nano-silver solder paste) are analyzed using JMatPro software to simulate their characteristics. First, a finite element analysis method is used to simulate the entire IGBT module with ANSYS Workbench platform. The study compares the impact of three types of solders on the overall heat transfer of the IGBT module under normal operation and welding layer damage conditions. The characteristics are analyzed based on changes in the junction temperature, heat flow path, and the law of thermal stress and deformation. The findings indicated that under steady-state working conditions, adjacent chips in a multi-chip IGBT module had significant thermal coupling, with a maximum temperature difference between chip junctions reaching up to 13 °C, and a phenomenon of heat concentration emerged. The three types of solders could change the thermal conductivity and heat transfer direction of the IGBT module to varying degrees, resulting in a temperature change of 3–6 °C. Under conditions of solder layer damage, the junction temperature increased linearly with the severity of the damage. In the 92.5Pb5Sn2.5Ag and Sn3.0Ag0.5Cu (SAC305) solders, the presence of intermetallic compounds (IMCs) led to more stress concentration points in the solder layer, with the maximum stress reaching 7.14661 × 107 MPa and concentrated at the edge of the solder layer. The nano-silver solder layer had the best thermal conductivity, and the maximum thermal deformation under the same conditions was only 1.9092 × 10−5 m.

Funder

Science and Technology Project of Science and Technology Department of Hubei Province

Publisher

MDPI AG

Subject

General Materials Science

Reference26 articles.

1. A Review on IGBT Module Failure Modes and Lifetime Testing;Abuelnaga;IEEE Access,2021

2. Overview of monitoring methods of press-pack insulated gate bipolar transistor modules under different package failure modes;Liu;IET Power Electron.,2023

3. Physical investigation into effective voltage balaneing bytemporary clamp technique for the series connection of IGBTs;Yang;IEEE Trans. Power Electron.,2017

4. Wang, P., Luo, W., and Yang, S. (2016, January 10–11). In Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications, Xi’an, China.

5. Influence of the clamping pressure on the electrical, thermal and mechanical behavior of press-pack IGBTs;Poller;Microelectron. Reliab.,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3