Design and Optimization of Heat Treatment Process Parameters for High-Molybdenum-Vanadium High-Speed Steel for Rolls

Author:

Chen Jibing1ORCID,Liu Yanfeng1,Wang Yujie2,Xu Rong3,Shi Qianyu1,Chen Junsheng1,Wu Yiping4

Affiliation:

1. School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China

2. School of Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

3. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China

4. School of Materials Science and Technology, Huazhong University Science and Technology, Wuhan 430074, China

Abstract

High-molybdenum-vanadium high-speed steel is a new type of high-hardenability tool steel with excellent wear resistance, castability, and high-temperature red hardness. This paper proposes a composition design of high-molybdenum-vanadium high-speed steel for rolls, and its specific chemical composition is as follows (wt.%): C2%, Mo7.0%, V7.0%, Si0.3%, Mn0.3%, Ni0.4%, Cr3.0%, and the rest of the iron. This design is characterized by the increase in molybdenum and vanadium in high-speed steel to replace traditional high-speed steel rolls with the tungsten element in order to reduce the heavy elements’ tungsten-specific gravity segregation caused by centrifugal casting so that the roll performance is uniform and the stability of use is improved. JMatPro (version 7.0) simulation software is used for the composition design of high-molybdenum-vanadium high-speed steel. The phase composition diagram is analyzed under different temperatures. The content of different phases of the organization in different temperatures is also studied. The martensitic transformation temperature and different tempering temperatures with the different types of compounds and grain sizes are calculated. The process parameters of heat treatment of high-molybdenum-vanadium high-speed steel are optimized. The selection of carbon content and the temperature of M50 are calculated and optimized, and the results show that the range of pouring temperatures, quenching temperatures, annealing temperatures, and tempering temperatures are 1360~1410 °C, 1190~1200 °C, 818~838 °C, and 550~600 °C, respectively. Scanning electron microscope (SEM) analysis of the samples obtained by using the above heat treatment parameters is consistent with the simulation results, which indicates that the simulation has important reference significance for guiding the actual production.

Funder

Science and Technology Department of Hubei Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3