Joint Formation Control with Obstacle Avoidance of Towfish and Multiple Autonomous Underwater Vehicles Based on Graph Theory and the Null-Space-Based Method

Author:

Pang Shi-kun,Li Ying-hui,Yi Hong

Abstract

In this study, a new joint formation combined with a two-part underwater towed vehicle (towfish) with multiple autonomous underwater vehicles (AUVs) was investigated. A triangular structure formation was established based on graph theory, in which the main point is the secondary towed vehicle acting as the “leader,” and the other two points are AUVs acting as “followers.” The excellent real-time performance and high flexibility of the towfish is highlighted, and the communication delay and fixed routine of AUVs can be avoided simultaneously. As to the obstacle avoidance, the null-space-based behavioral approach is proposed. On the basis of this approach, the formation task moving to the target is decomposed into different subtasks, and the obstacle avoidance subtask is set as the highest priority. The vector of the low-level task is projected to the null space of the high-level task vector, and the integrated task output is used as the final output function. The low-level task is partially or completely accomplished while handling the higher task; therefore, the mutual conflict between different level targets can be avoided. Moreover, the corresponding task functions are designed in accordance with different subtask priorities. The comprehensive output function of formation motion is deduced and established to ensure that obstacles can be avoided effectively. Furthermore, simulation results demonstrate the effectiveness and feasibility of the proposed method in a complex underwater environment with obstacles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3