Soundscape Characterization Using Autoencoders and Unsupervised Learning

Author:

Nieto-Mora Daniel Alexis1ORCID,Ferreira de Oliveira Maria Cristina2ORCID,Sanchez-Giraldo Camilo3ORCID,Duque-Muñoz Leonardo1ORCID,Isaza-Narváez Claudia4ORCID,Martínez-Vargas Juan David5ORCID

Affiliation:

1. Máquinas Inteligentes y Reconocimiento de Patrones (MIRP), Instituto Tecnológico Metropolitano ITM, Medellín 050034, Colombia

2. Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil

3. Grupo Herpetológico de Antioquia, Institute of Biology, Universidad de Antioquia-UdeA, Medellín 050010, Colombia

4. SISTEMIC, Facultad de Ingeniería, Universidad de Antioquia-UdeA, Medellín 050010, Colombia

5. GIDITIC, Universidad EAFIT, Medellín 050022, Colombia

Abstract

Passive acoustic monitoring (PAM) through acoustic recorder units (ARUs) shows promise in detecting early landscape changes linked to functional and structural patterns, including species richness, acoustic diversity, community interactions, and human-induced threats. However, current approaches primarily rely on supervised methods, which require prior knowledge of collected datasets. This reliance poses challenges due to the large volumes of ARU data. In this work, we propose a non-supervised framework using autoencoders to extract soundscape features. We applied this framework to a dataset from Colombian landscapes captured by 31 audiomoth recorders. Our method generates clusters based on autoencoder features and represents cluster information with prototype spectrograms using centroid features and the decoder part of the neural network. Our analysis provides valuable insights into the distribution and temporal patterns of various sound compositions within the study area. By utilizing autoencoders, we identify significant soundscape patterns characterized by recurring and intense sound types across multiple frequency ranges. This comprehensive understanding of the study area’s soundscape allows us to pinpoint crucial sound sources and gain deeper insights into its acoustic environment. Our results encourage further exploration of unsupervised algorithms in soundscape analysis as a promising alternative path for understanding and monitoring environmental changes.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3