1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Rafal Jozefowicz, Y.J., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vijay Vasudevan, F.V., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
2. To combat multi-class imbalanced problems by means of over-sampling techniques;Abdi;IEEE Trans. Knowl. Data Eng.,2016
3. Assessing the changing urban sound environment during the COVID-19 lockdown period using short-term acoustic measurements;Aletta;Noise Mapp.,2020
4. warbleR: an r package to streamline analysis of animal acoustic signals;Araya-Salas;Methods Ecol. Evol.,2017
5. Statistical learning mitigation of false positives from template-detected data in automated acoustic wildlife monitoring;Balantic;Bioacoustics,2020