Centralized Mission Planning for Multiple Robots Minimizing Total Mission Completion Time

Author:

Hwang Nam Eung1ORCID,Kim Hyung Jun1,Kim Jae Gwan1

Affiliation:

1. Hanwha Systems Co., Seongnam-si 13524, Gyeonggi-do, Republic of Korea

Abstract

Most mission planning algorithms solve multi-robot-multi-mission problems based on mixed integer linear programming. In these algorithms, the rewards (or costs) of missions for each robot are calculated according to the purpose of the user. Then, the (robot-mission) pair that has maximum rewards (or minimum costs) is found in the rewards (or costs) table and the mission is allocated to the robot. However, it is hard to design the reward for minimizing total mission completion time because not only a robot, but also the whole robots’ mission plans must be considered to achieve the purpose. In this paper, we propose centralized mission planning for multi-robot-multi-mission problems, minimizing total mission completion time. First, mission planning for single-robot-multi-mission problems is proposed because it is easy to solve. Then, this method is applied for multi-robot-multi-mission problems, adding a mission-plan-adjustment step. To show the excellent performance of the suggested algorithm in diverse situations, we demonstrate simulations for 3 representative cases: a simple case, which is composed of 3 robots and 8 missions, a medium case, which is composed of 4 robots and 30 missions, and a huge case, which is composed of 6 robots and 50 missions. The total mission completion time of the proposed algorithm for each case is lower than the results of the existing algorithm.

Funder

Defense Acquisition Program Administration

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Man-in-the-Loop Control and Mission Planning for Unmanned Underwater Vehicles;Journal of Marine Science and Engineering;2024-02-27

2. Multi-Robot Path Planning based on Ant Colony Algorithm;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3