The Design of 2DOF IMC-PID Controller in Biochemical Reaction Networks

Author:

Li Yang1,Lv Hui12ORCID,Wang Xing’an3

Affiliation:

1. Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China

2. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110004, China

3. College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China

Abstract

DNA molecules can be adopted to design biomolecular control circuits that can effectively control biochemical reaction processes. However, the leak reaction in actual biochemical reactions causes a significant uncertainty for reactions. In this paper, the first-order time-delay system is selected as the controlled object. A two-degree-of-freedom internal model PID controller (2DOF IMC-PID) is constructed for the first time within the framework of chemical reaction networks (CRNs). Under this control strategy, the set-point tracking and disturbance suppression are tuned with individual controllers, respectively. The controller parameters are determined by two filtering parameters that affect the controller’s performance, so the parameter tuning is simpler and more targeted. Then, the 2DOF IMC-PID controller is implemented in DSD reaction networks, with less overshoot in the 2DOF IMC-PID control system than the traditional PID control system and the 2DOF PID control system. Finally, a 2DOF IMC-PID division gate control system is established to effectively inhibit the impacts of leak reactions on the computation results. Although the leak reaction occurs at the division gate, the ideal output can be produced by the 2DOF IMC-PID division gate control system.

Funder

111 Project

the National Natural Science Foundation of China

the Liaoning Revitalization Talents Program

the Natural Science Foundation of Liaoning Province

the Scientific Research Fund of Liaoning Provincial Education Department

the State Key Laboratory of Synthetical Automation for Process Industries, the State Key Laboratory of Light Alloy Casting Technology for High-end Equipment

the Postgraduate Education Reform Project of Liaoning province

the Dalian Outstanding Young Science and Technology Talent Support Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3