A Theoretical Framework for Implementable Nucleic Acids Feedback Systems

Author:

Paulino Nuno M. G.1ORCID,Foo Mathias1ORCID,de Greef Tom F. A.2ORCID,Kim Jongmin3ORCID,Bates Declan G.1ORCID

Affiliation:

1. School of Engineering, University of Warwick, Coventry CV4 7AL, UK

2. Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

3. Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongbuk, Republic of Korea

Abstract

Chemical reaction networks can be utilised as basic components for nucleic acid feedback control systems’ design for Synthetic Biology application. DNA hybridisation and programmed strand-displacement reactions are effective primitives for implementation. However, the experimental validation and scale-up of nucleic acid control systems are still considerably falling behind their theoretical designs. To aid with the progress heading into experimental implementations, we provide here chemical reaction networks that represent two fundamental classes of linear controllers: integral and static negative state feedback. We reduced the complexity of the networks by finding designs with fewer reactions and chemical species, to take account of the limits of current experimental capabilities and mitigate issues pertaining to crosstalk and leakage, along with toehold sequence design. The supplied control circuits are quintessential candidates for the first experimental validations of nucleic acid controllers, since they have a number of parameters, species, and reactions small enough for viable experimentation with current technical capabilities, but still represent challenging feedback control systems. They are also well suited to further theoretical analysis to verify results on the stability, performance, and robustness of this important new class of control systems.

Funder

BBSRC/EPSRC

EPSRC and BBSRC Centre for Doctoral Training in Synthetic Biology

Publisher

MDPI AG

Subject

Bioengineering

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3