Modelling Wave Transmission for Transient Flow and Amplitude-Frequency Characteristics of Tubular String in a Water Injection Well

Author:

Ming Eryang1,Li Cong2ORCID,Lan Huiqing2ORCID,Yu Jiaqing1,Zheng Lichen1,Pei Xiaohan1

Affiliation:

1. Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing 100083, China

2. Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China

Abstract

Fluid wave code communication is used in layered water injection intelligent monitoring systems, but a model of fluid transient flow wave signal transmission is still unknown. Impedance and transfer coefficient in power transmission theory were used to describe transient flow waves in the transmission process of a tubular string in a water injection well and a transient flow wave model was built based on the transfer matrix method. The relationship between pressure and discharge was analyzed when the transient flow waves moved along the tubular string, and the influence of terminal impedance and dip angle of the tubular string on the wave transmission was studied. Simulations showed that the transient flow waves were with standing wave distribution when the transient flow wave signals transmitted in the tubular string. Moreover, the transmission volatility under different terminal impedances was analyzed. The communication frequency was selected according to the wave amplitude ratio between the two ends of the water injection tubular string. The relationship between the influence of tubular string parameters and fluid characteristics on the wave velocity and wave amplitude in the signal transmission process was obtained by simulation analysis. The wave velocity tended to decrease as the gas content increased. As the tube diameter–thickness ratio increased, the wave velocity decreased. Taking data from a water injection well in Daqing Oilfield as an example, a two-layer water injection test platform was built to study the fluctuation of discharge and pressure at monitoring points in the tubular string. The experiment condition was that the depth of the injection well was 1400 m. It was verified by the experiments that the pressure and flow changes in the downhole and wellhead had good consistency during the transmission of transient flow waves. Comparing the experimental results with the numerical results, the errors of the wave velocity and wave amplitude were 0.69% and 3.85%, respectively, indicating the verification of the simulation model. This study provides a theoretical support for the transmission of transient flow wave signals in a water injection tubular string.

Funder

China Institute of Petroleum Exploration and Development project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transmission model of transient flow wave signal in intelligent layered water injection system;Journal of Petroleum Exploration and Production Technology;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3