Transmission model of transient flow wave signal in intelligent layered water injection system

Author:

Ming Eryang,Yu Jiaqing,Zheng Lichen,Li Cong,Lan Hui-qing,Zhou Qichun,Pei Xiaohan

Abstract

AbstractFluid wave code communication is used in layered water injection intelligent monitoring system, but model of fluid transient flow wave signal transmission is still unknown. Based on the fluid energy equation of steady flow, a transmission mathematical model of fluid transient flow wave signal in intelligent layered water injection system was established. The model can accurately describe the transient flow wave transmission characteristics in the tubular string of water injection wells. The transient flow wave signals and influencing factors generated by the ground electric control valve and the downhole water distributor were studied, and the transmission mechanism of the signal in the water injection tubular string was revealed. Studies show that ground and downhole transient flow wave signals are generated by discharge changes caused by changes in the opening degree of the ground valve and the downhole water distributor. The length of the water injection tube has no effect on the downlink transmission of the wellhead signal, but has a certain influence on the uploading of the downhole signal. Numerical calculations show that the flow rate of the water injection tube has a great influence on the amplitude of the pressure signal. The larger flow rate can generate larger signal amplitude, which is beneficial to the signal transmission, signal detection and processing. It was verified by the experiments and simulations that the pressure and flow changes in the downhole and wellhead had good consistency during the transmission of transient flow waves. It is found that the greater the variation of opening degree, the greater the amplitude of transient flow wave signal, which is beneficial to the wave signal transmission. The optimal settings for the valve opening are selected as $$100\% \rightleftarrows 0\%$$ 100 % 0 % . This study has theoretical guiding significance for the design and performance improvement of fluid wave code communication systems.

Funder

Research Institute of Petroleum Exploration & Development, PetroChina Company Limited

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3