Heat Transfer Limitations in Supercritical Water Gasification

Author:

Gutiérrez Ortiz Francisco Javier GutiérrezORCID,López-Guirao Francisco,Jiménez-Espadafor Francisco José,Benjumea José Manuel

Abstract

Supercritical water gasification (SCWG) is a promising technology for the valorization of wet biomass with a high-water content, which has attracted increasing interest. Many experimental studies have been carried out using conventional heating equipment at lab scale, where researchers try to obtain insight into the process. However, heat transfer from the energy source to the fluid stream entering the reactor may be ineffective, so slow heating occurs that produces a series of undesirable reactions, especially char formation and tar formation. This paper reviews the limitations due to different factors affecting heat transfer, such as low Reynolds numbers or laminar flow regimes, unknown real fluid temperature as this is usually measured on the tubing surface, the strong change in physical properties of water from subcritical to supercritical that boosts a deterioration in heat transfer, and the insufficient mixing, among others. In addition, some troubleshooting and new perspectives in the design of efficient and effective devices are described and proposed to enhance heat transfer, which is an essential aspect in the experimental studies of SCWG to move it forward to a larger scale.

Funder

Regional Government of Andalusia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3