Flow and Heat Transfer Characteristics of S-CO2 in a Vertically Rising Y-Tube

Author:

Hao Xiaohong,Du Su,Yang Qiguo,Zhang Sen,Zhang Qi

Abstract

The supercritical carbon dioxide Brayton cycle has gradually become a research focus, but we also see a deficiency in research related to the flow and heat transfer characteristics of S-CO2 boiler staves with high parameters. In this paper, the flow and heat transfer of supercritical carbon dioxide is investigated in a 1000 MW supercritical boiler cooled wall tube in the parameters of a pressure of 30.42 MPa, a mass flux of 1592~2207 kg/(m2·s), and a heat flux of 39.8~71.2 kw/m2; a three-dimensional model of supercritical CO2 fluid in the cooling wall tube is established with the RNG k-epsilon turbulence model. Numerical simulations are carried out according to the following boundary conditions: an adiabatic half side, a heated half side, and a Y-type three-way two-to-one. The effects of the mass flux, inlet temperature, and heat flux on the flow and heat transfer characteristics in the Y-tube are analyzed, which exerts great influence on the research of S-CO2 boiler stave thermodynamics.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3