Test and Numerical Simulation Investigation on Seismic Performance of Different Types of Expansive Polystyrene Granule Cement Latticed Concrete Walls

Author:

Cao Xinyu,Li Xiaojun,Tang Baizan

Abstract

An expansive polystyrene granule cement (EPSC) latticed concrete wall with diagonal bracing is formed with a traditional EPSC latticed concrete wall skeleton with added diagonal bracing. It is a new model of non-demolding wall integrating insulation and structure. For the new model, the length of one EPSC panel is 1200 mm, which is 300 mm longer than that of the traditional one. The diagonal bracing is arranged in a 45° orthogonal grid in the new model. In contrast, the traditional type has only horizontal lattice beams and vertical lattice columns. Through the pseudo-static test of two new EPSC latticed concrete wall specimens with diagonal bracing and two traditional EPSC latticed concrete wall specimens, the seismic performance of latticed concrete walls was investigated in this study. The main difference between the specimens was the lattice form and the core hole diameter. Finite element simulation was carried out on the simplified models of a latticed concrete wall with diagonal bracing. The results showed that EPSC could work with post-poured concrete to withstand earthquake action together. Additionally, the lateral performance of the EPSC latticed concrete wall with diagonal bracing was significantly improved compared with the traditional type, and the overall seismic performance was improved, especially the energy dissipation capacity, which increased by more than 180%. The bearing capacity increased by more than 12%, when the amount of concrete was basically the same. The initial stiffness was improved by more than 52%. As the diameter of the core hole increased 20 mm, the bearing capacity improved more than 12%. Simplified modeling methods could be used to analyze the seismic performance of latticed concrete walls under lateral cyclic loading. The study reveals the seismic performance characteristics of latticed composite walls with different lattice forms and core hole diameters, and it provides technical support for the engineering application of different lattice forms and core hole diameter latticed composite walls.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Youth Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3