Author:
Cao Xinyu,Li Xiaojun,Tang Baizan
Abstract
An expansive polystyrene granule cement (EPSC) latticed concrete wall with diagonal bracing is formed with a traditional EPSC latticed concrete wall skeleton with added diagonal bracing. It is a new model of non-demolding wall integrating insulation and structure. For the new model, the length of one EPSC panel is 1200 mm, which is 300 mm longer than that of the traditional one. The diagonal bracing is arranged in a 45° orthogonal grid in the new model. In contrast, the traditional type has only horizontal lattice beams and vertical lattice columns. Through the pseudo-static test of two new EPSC latticed concrete wall specimens with diagonal bracing and two traditional EPSC latticed concrete wall specimens, the seismic performance of latticed concrete walls was investigated in this study. The main difference between the specimens was the lattice form and the core hole diameter. Finite element simulation was carried out on the simplified models of a latticed concrete wall with diagonal bracing. The results showed that EPSC could work with post-poured concrete to withstand earthquake action together. Additionally, the lateral performance of the EPSC latticed concrete wall with diagonal bracing was significantly improved compared with the traditional type, and the overall seismic performance was improved, especially the energy dissipation capacity, which increased by more than 180%. The bearing capacity increased by more than 12%, when the amount of concrete was basically the same. The initial stiffness was improved by more than 52%. As the diameter of the core hole increased 20 mm, the bearing capacity improved more than 12%. Simplified modeling methods could be used to analyze the seismic performance of latticed concrete walls under lateral cyclic loading. The study reveals the seismic performance characteristics of latticed composite walls with different lattice forms and core hole diameters, and it provides technical support for the engineering application of different lattice forms and core hole diameter latticed composite walls.
Funder
National Natural Science Foundation of China
Jiangxi Provincial Youth Science Foundation
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献