Recycled PET Composites Reinforced with Stainless Steel Lattice Structures Made by AM
Author:
Rusu Mircea1, Balc Nicolae1ORCID, Moldovan Marioara2ORCID, Cuc Stanca2ORCID, Petean Ioan3ORCID, Cosma Cosmin1ORCID, Leordean Dan1ORCID
Affiliation:
1. Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, 103-105 Muncii Blvd, 400641 Cluj-Napoca, Romania 2. Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania 3. Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
Abstract
Polyethylene terephthalate (PET) recycling is one of the most important environmental issues, assuring a cleaner environment and reducing the carbon footprint of technological products, taking into account the quantities used year by year. The recycling possibilities depend on the quality of the collected material and on the targeted product. Current research aims to increase recycling quantities by putting together recycled PET in an innovative way as a filler for the additive manufactured metallic lattice structure. Starting from the structures mentioned above, a new range of composite materials was created: IPC (interpenetrating phase composites), materials with a complex architecture in which a solid phase, the reinforcement, is uniquely combined with the other phase, heated to the temperature of melting. The lattice structure was modeled by the intersection of two rings using Solid Works, which generates the lattice structure, which was further produced by an additive manufacturing technique from 316L stainless steel. The compressive strength shows low values for recycled PET, of about 26 MPa, while the stainless-steel lattice structure has about 47 MPa. Recycled PET molding into the lattice structure increases its compressive strength at 53 MPa. The Young’s moduli are influenced by the recycled PET reinforcement by an increase from about 1400 MPa for the bare lattice structure to about 1750 MPa for the reinforced structure. This sustains the idea that recycled PET improves the composite elastic behavior due to its superior Young’s modulus of about 1570 MPa, acting synergically with the stainless-steel lattice structure. The morphology was investigated with SEM microscopy, revealing the binding ability of recycled PET to the 316L surface, assuring a coherent composite. The failure was also investigated using SEM microscopy, revealing that the microstructural unevenness may act as a local tensor, which promotes the interfacial failure within local de-laminations that weakens the composite, which finally breaks.
Subject
Polymers and Plastics,General Chemistry
Reference35 articles.
1. Setter, R., Hafenecker, J., Rothfelder, R., Kopp, S.-P., Roth, S., Schmidt, M., Merklein, M., and Wudy, K. (2023). Innovative Process Strategies in Powder-Based Multi-Material Additive Manufacturing. J. Manuf. Mater. Process., 7. 2. Seok, W., Jeon, E., and Kim, Y. (2023). Effects of Annealing for Strength Enhancement of FDM 3D-Printed ABS Reinforced with Recycled Carbon Fiber. Polymers, 15. 3. Basar, O., Veliyath, V.P., Tarak, F., and Sabet, E. (2023). A Systematic Study on Impact of Binder Formulation on Green Body Strength of Vat-Photopolymerisation 3D Printed Silica Ceramics Used in Investment Casting. Polymers, 15. 4. Advances in crack formation mechanism and inhibition strategy for ceramic additive manufacturing;Liu;J. Eur. Ceram. Soc.,2023 5. Tailoring the microstructure and mechanical properties of wire and arc additive manufactured Al–Mg alloy via interlayer friction stir processing;Liu;J. Mater. Res. Technol.,2023
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|