Recycled PET Composites Reinforced with Stainless Steel Lattice Structures Made by AM

Author:

Rusu Mircea1,Balc Nicolae1ORCID,Moldovan Marioara2ORCID,Cuc Stanca2ORCID,Petean Ioan3ORCID,Cosma Cosmin1ORCID,Leordean Dan1ORCID

Affiliation:

1. Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, 103-105 Muncii Blvd, 400641 Cluj-Napoca, Romania

2. Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania

3. Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania

Abstract

Polyethylene terephthalate (PET) recycling is one of the most important environmental issues, assuring a cleaner environment and reducing the carbon footprint of technological products, taking into account the quantities used year by year. The recycling possibilities depend on the quality of the collected material and on the targeted product. Current research aims to increase recycling quantities by putting together recycled PET in an innovative way as a filler for the additive manufactured metallic lattice structure. Starting from the structures mentioned above, a new range of composite materials was created: IPC (interpenetrating phase composites), materials with a complex architecture in which a solid phase, the reinforcement, is uniquely combined with the other phase, heated to the temperature of melting. The lattice structure was modeled by the intersection of two rings using Solid Works, which generates the lattice structure, which was further produced by an additive manufacturing technique from 316L stainless steel. The compressive strength shows low values for recycled PET, of about 26 MPa, while the stainless-steel lattice structure has about 47 MPa. Recycled PET molding into the lattice structure increases its compressive strength at 53 MPa. The Young’s moduli are influenced by the recycled PET reinforcement by an increase from about 1400 MPa for the bare lattice structure to about 1750 MPa for the reinforced structure. This sustains the idea that recycled PET improves the composite elastic behavior due to its superior Young’s modulus of about 1570 MPa, acting synergically with the stainless-steel lattice structure. The morphology was investigated with SEM microscopy, revealing the binding ability of recycled PET to the 316L surface, assuring a coherent composite. The failure was also investigated using SEM microscopy, revealing that the microstructural unevenness may act as a local tensor, which promotes the interfacial failure within local de-laminations that weakens the composite, which finally breaks.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3