Characterization of Microstructure, Phase Composition, and Mechanical Behavior of Ballistic Steels

Author:

Khan Waseem,Tufail Muhammad,Chandio Ali DadORCID

Abstract

For the protection of civil and military armored vehicles, advanced steels are used, due to their outstanding mechanical properties, high ballistic performance, ease of manufacturing and low cost. However, after retrofitting, weight is the prominent issue. In this regard, several strategies are being proposed, which include the surface engineering of either low-thickness ballistic steels or conventional steels, in addition to new alloys and composites. Therefore, to better understand the response of such materials under various stimuli, the existing state of the art ballistic steels was utilized in this study. The aim of this study was to better understand the existing materials and their corrosion behavior. Therefore, in this connection, two thicknesses were selected, i.e., thin (6.7–7.0 mm) and thick (13.0–15.0 mm), henceforth termed as low thickness (LT) and high thickness (HT), respectively. This was followed by characterization using tensile, Charpy, micro-Vickers, nanoindentation, XRD, SEM-EDS and corrosion tests. Microstructurally, the LT samples only exhibited ε-carbide precipitates, whereas the HT samples contained both ε-carbides and Mo2C (molybdenum carbides). However, both samples were found to be tempered martensite with a lath morphology. Moreover, higher hardness, and lower elastic modulus and stiffness were noticed in the HT samples compared with their LT counterparts. Fractured surfaces of both of these alloys were also examined, wherein a ductile mode of fracturing was observed. Further, a corrosion study was also carried out in brine solution. The results showed a higher corrosion rate in the HT samples than that of their LT counterparts. An extensive discussion is presented in light of the observed findings.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3