Electronic Tongue Recognition with Feature Specificity Enhancement

Author:

Liu TaoORCID,Chen Yanbing,Li Dongqi,Yang Tao,Cao Jianhua

Abstract

As a kind of intelligent instrument, an electronic tongue (E-tongue) realizes liquid analysis with an electrode-sensor array and certain machine learning methods. The large amplitude pulse voltammetry (LAPV) is a regular E-tongue type that prefers to collect a large amount of response data at a high sampling frequency within a short time. Therefore, a fast and effective feature extraction method is necessary for machine learning methods. Considering the fact that massive common-mode components (high correlated signals) in the sensor-array responses would depress the recognition performance of the machine learning models, we have proposed an alternative feature extraction method named feature specificity enhancement (FSE) for feature specificity enhancement and feature dimension reduction. The proposed FSE method highlights the specificity signals by eliminating the common mode signals on paired sensor responses. Meanwhile, the radial basis function is utilized to project the original features into a nonlinear space. Furthermore, we selected the kernel extreme learning machine (KELM) as the recognition part owing to its fast speed and excellent flexibility. Two datasets from LAPV E-tongues have been adopted for the evaluation of the machine-learning models. One is collected by a designed E-tongue for beverage identification and the other one is a public benchmark. For performance comparison, we introduced several machine-learning models consisting of different combinations of feature extraction and recognition methods. The experimental results show that the proposed FSE coupled with KELM demonstrates obvious superiority to other models in accuracy, time consumption and memory cost. Additionally, low parameter sensitivity of the proposed model has been demonstrated as well.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3