Field and Laboratory Assessment of Different Concrete Paving Materials Thermal Behavior

Author:

Barišić IvanaORCID,Netinger Grubeša Ivanka,Krstić HrvojeORCID,Kubica Dalibor

Abstract

Impervious pavement surfaces within urban areas present serious environmental problems due to waterlogging, flooding and in particular, the urban heat island (UHI) phenomenon. Another issue that has recently been highlighted is user comfort in pedestrian and cycling areas. Materials that have potential for overcoming these issues include pervious concrete (PC), a new type of construction material with improved drainage properties and thermal properties. In this study, the thermal properties and behavior of commonly used concrete paving materials in urban areas (dense concrete (DC) and concrete pavers (P)) and pervious concrete (PC) paving flags were investigated and compared in terms of their thermal properties. Material behavior under different temperature conditions was investigated within laboratory research measuring thermal conductivity (λ) and the capacity for heating and cooling using infrared lamp. Complementary to laboratory tests, field research was conducted analyzing the surrounding conditions on pavement wearing course behavior under real weather conditions. Dense concrete paving material had the highest thermal conductivity coefficient and heat absorption capacity, and slowest heating and cooling speed, compared with the other paving materials. The results also highlighted the similar thermal properties of PC and P but with potentially improved user comfort for PC due to its draining properties. The base layer and surrounding characteristics had a significant influence on the thermal behavior of pavements, and future research should consider these parameters when addressing the UHI effect for different paving materials.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3