Tree Traits and Microclimatic Conditions Determine Cooling Benefits of Urban Trees

Author:

Sharmin Mahmuda12,Tjoelker Mark G.1ORCID,Pfautsch Sebastian3ORCID,Esperón-Rodriguez Manuel1ORCID,Rymer Paul D.1,Power Sally A.1

Affiliation:

1. Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia

2. Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh

3. Urban Planning and Management, School of Social Sciences, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia

Abstract

Trees play a key role in mitigating urban heat by cooling the local environment. This study evaluated the extent to which street trees can reduce sub-canopy air temperature relative to ambient conditions (ΔT), and how ΔT relates to tree traits and microclimatic variables. Air temperature under the canopies of 10 species was recorded within residential areas in Western Sydney, Australia, during summer 2019–2020. Tree and canopy traits, namely tree height, specific leaf area, leaf dry matter content, leaf area index, crown width and the Huber value (the ratio of sapwood area to leaf area) were then measured for all species. Species differed significantly in their ΔT values, with peak cooling (maximum ΔT −3.9 °C) observed between 9–10 am and sub-canopy warming (i.e., positive ΔT values) typically occurring during afternoon and overnight. Trees with high LAI and wider canopies were associated with the greatest daytime cooling benefits and lower levels of nighttime warming. ΔT was also negatively related to windspeed and vapor pressure deficit, and positively to solar irradiance. This study provides valuable information on how tree characteristics and microclimate influence potential cooling benefits that may aid planning decisions on the use of trees to mitigate heat in urban landscapes.

Funder

Hort Frontiers Green Cities Fund

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference84 articles.

1. IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. More intense, more frequent, and longer lasting heat waves in the 21st century;Meehl;Science,2004

3. Climate change increases global risk to urban forests;Tjoelker;Nat. Clim. Chang.,2022

4. Global urban population exposure to extreme heat;Tuholske;Proc. Natl. Acad. Sci. USA,2021

5. Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., and Seto, K.C. (2013). Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities, Springer.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3