Spatiotemporal Variability in Precipitation Extremes in the Jianghuai Region of China and the Analysis of Its Circulation Features

Author:

Wang YuanningORCID,Peng Zhuoyue,Wu Hao,Wang Panpan

Abstract

In the context of global warming, changes in extreme-precipitation events are becoming increasingly complex, and investigating the spatial and temporal variation characteristics of extreme precipitation is extremely important for scientific water-resource planning, preventing new climate risks and maintaining ecosystem balances. Based on the daily precipitation from 1960–2017 at 15 meteorological stations in the Jianghuai region, the extreme-precipitation indices were calculated. The variations in 12 extreme-precipitation indices were detected by using the Mann–Kendall test in the Jianghuai region. The periodicity of indices was examined by wavelet analysis detecting significant time sections. Through the cross wavelet transform and wavelet coherence analyses, the nonlinear connections between extreme precipitation and atmospheric circulation were explored. The results indicate significant increasing trends in the max one-day precipitation amount (Rx1day), extreme wet days (R99p), and simple precipitation intensity index (SDII). The intensity of extreme precipitation increased significantly. The variation in extreme precipitation showed different trends in different regions, with a greater likelihood of increasing extreme-precipitation intensity and frequency in the southern region compared to the central and northern regions. The period of most oscillations of the indices tend toward be on a time scale of 2–4 years and are in the 1990s. The number of heavy precipitation days (R10 mm) and number of very heavy precipitation days (R20 mm) had, mainly, periods of 5.84 years. Additionally, there were significant resonance periods between the extreme-precipitation indices and the atmospheric circulation index; however, there were obvious differences in time domains. The North Atlantic Oscillation (NAO) and East Asian summer monsoon (EASM) had the most significant effect on the duration of extreme precipitation; Atlantic Oscillation (AO) and EASM had the most significant influence on the extreme-precipitation intensity. The results of the study can provide a scientific basis for water-resource management and disaster prevention and control in the Jianghuai region.

Funder

Jiangsu Provincial Double-Innovation Doctor Program

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference71 articles.

1. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations;Song;Glob. Planet. Change,2014

2. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,2021

3. The Changing Character of Precipitation

4. Extreme Events of Droughts and Floods in Amazonia: 2005 and 2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3