Water Hammer Characteristics and Component Fatigue Analysis of the Essential Service Water System in Nuclear Power Plants

Author:

Su Haonan12,Sheng Liyuan23,Zhao Shuai12,Lu Cheng23,Zhu Rongsheng12,Chen Yiming12,Fu Qiang12

Affiliation:

1. National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China

2. The Joint Lab of Intelligent O & M for NPP Pump, Zhenjiang 212013, China

3. China Nuclear Power Engineering Co., Ltd., Beijing 100048, China

Abstract

Due to the operation conditions and system characteristics of the essential service water system of nuclear power plants, water hammer pressure fluctuates in each transient process. In order to further analyze the characteristics of the water hammer and the harm this can cause to system equipment, this paper uses one-dimensional transient computing software to simulate the water hammer characteristics of the system under different operating conditions and at different water levels. The instantaneous pressure data of water hammer in the essential service water system were used as input conditions for fatigue analysis of components, and the fatigue damage of at-risk parts was calculated. The results show that the pressure fluctuation due to single pump outage is greater than that due to single pump start-up and the start-up of double pumps. The maximum pressure of the system under the design flood level is greater than that of other water levels, and the maximum pressure of the system under each working condition is 3.87 MPa. The most at-risk part of the system pressure fluctuation is the return valve, followed by the valve after a bend in a pipe and the tee pipe fitting. In the whole system, the joint of the main branch of a tee pipe experiences the greatest fatigue damage, and the theoretical fatigue life is 127.55 years.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3