Abstract
Water hammers seriously endanger the stability and safety of pipeline transportation systems, and its protection mechanism has been a hotspot for research. In order to study the change of water hammer pressure caused by the ball valve under different closing laws, the computational fluid dynamics method was used to perform transient numerical simulation of the ball valve under different closing times and closing laws. The results show that the faster the valve closing speed in the early stage, the greater the water hammer pressure. The vortex core motion and pressure vibration were affected by the closing law. Extending the valve closing time can effectively reduce the maximum water hammer pressure. These findings could provide reference for water hammer protection during the closing process of the pipeline system with the ball valve.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献