An Ensemble Deep-Learning-Based Model for Hour-Ahead Load Forecasting with a Feature Selection Approach: A Comparative Study with State-of-the-Art Methods

Author:

Yaprakdal FatmaORCID

Abstract

The realization of load forecasting studies within the scope of forecasting periods varies depending on the application areas and estimation purposes. It is mainly carried out at three intervals: short-term, medium-term, and long-term. Short-term load forecasting (STLF) incorporates hour-ahead load forecasting, which is critical for dynamic data-driven smart power system applications. Nevertheless, based on our knowledge, there are not enough academic studies prepared with particular emphasis on this sub-topic, and none of the related studies evaluate STLF forecasting methods in this regard. As such, machine learning (ML) and deep learning (DL) architectures and forecasters have recently been successfully applied to STLF, and are state-of-the-art techniques in the energy forecasting area. Here, hour-ahead load forecasting methods, the majority of which are frequently preferred high-performing up-to-date methods in the literature, were first examined based on different forecasting techniques using two different aggregated-level datasets and observing the effects of these methods on both. Case and comparison studies have been conducted on these high-performing methods before, but there are not many examples studied using data from two different structures. Although the data used in this study were different from each other in terms of the time step, they also had very different and varied features. In addition, feature selection was studied on both datasets and a backward-eliminated exhaustive approach based on the performance of the artificial neural network (ANN) on the validation set was proposed for the development study of the forecasting models. A new DL-based ensemble approach was proposed after examining the results obtained on two separate datasets by applying the feature selection approach to the working forecasting methods, and the numerical results illustrate that it can significantly improve the forecasting performance compared with these up-to-date methods.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3