Abstract
The realization of load forecasting studies within the scope of forecasting periods varies depending on the application areas and estimation purposes. It is mainly carried out at three intervals: short-term, medium-term, and long-term. Short-term load forecasting (STLF) incorporates hour-ahead load forecasting, which is critical for dynamic data-driven smart power system applications. Nevertheless, based on our knowledge, there are not enough academic studies prepared with particular emphasis on this sub-topic, and none of the related studies evaluate STLF forecasting methods in this regard. As such, machine learning (ML) and deep learning (DL) architectures and forecasters have recently been successfully applied to STLF, and are state-of-the-art techniques in the energy forecasting area. Here, hour-ahead load forecasting methods, the majority of which are frequently preferred high-performing up-to-date methods in the literature, were first examined based on different forecasting techniques using two different aggregated-level datasets and observing the effects of these methods on both. Case and comparison studies have been conducted on these high-performing methods before, but there are not many examples studied using data from two different structures. Although the data used in this study were different from each other in terms of the time step, they also had very different and varied features. In addition, feature selection was studied on both datasets and a backward-eliminated exhaustive approach based on the performance of the artificial neural network (ANN) on the validation set was proposed for the development study of the forecasting models. A new DL-based ensemble approach was proposed after examining the results obtained on two separate datasets by applying the feature selection approach to the working forecasting methods, and the numerical results illustrate that it can significantly improve the forecasting performance compared with these up-to-date methods.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference44 articles.
1. Chen, K., and Wang, L. (2007). Trends in Neural Computation, Springer.
2. Automated Demand Response in Smart Distribution Grid: A Review on Metering Infrastructure, Communication Technology and Optimization Models;Tiwari;Electr. Power Syst. Res.,2022
3. Security of power supply in hydrothermal systems: Assessing minimum storage requisites for hydroelectric plants;Godinho;ELectr. Power Syst. Res.,2020
4. Implementation of advanced functionalities for Distribution Management Systems: Load forecasting and modeling through Artificial Neural Networks ensembles;Saviozzi;Electr. Power Syst. Res.,2019
5. Review of load forecasting based on artificial intelligence methodologies, models, and challenges;Hou;Electr. Power Syst. Res.,2022
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献