Fuzzy Clustering-Based Deep Learning for Short-Term Load Forecasting in Power Grid Systems Using Time-Varying and Time-Invariant Features

Author:

Chan Kit Yan1ORCID,Yiu Ka Fai Cedric2ORCID,Kim Dowon1ORCID,Abu-Siada Ahmed1ORCID

Affiliation:

1. School of Electrical Engineering, Computing and Mathematics Sciences, Curtin University, Bentley, WA 6102, Australia

2. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong

Abstract

Accurate short-term load forecasting (STLF) is essential for power grid systems to ensure reliability, security and cost efficiency. Thanks to advanced smart sensor technologies, time-series data related to power load can be captured for STLF. Recent research shows that deep neural networks (DNNs) are capable of achieving accurate STLP since they are effective in predicting nonlinear and complicated time-series data. To perform STLP, existing DNNs use time-varying dynamics of either past load consumption or past power correlated features such as weather, meteorology or date. However, the existing DNN approaches do not use the time-invariant features of users, such as building spaces, ages, isolation material, number of building floors or building purposes, to enhance STLF. In fact, those time-invariant features are correlated to user load consumption. Integrating time-invariant features enhances STLF. In this paper, a fuzzy clustering-based DNN is proposed by using both time-varying and time-invariant features to perform STLF. The fuzzy clustering first groups users with similar time-invariant behaviours. DNN models are then developed using past time-varying features. Since the time-invariant features have already been learned by the fuzzy clustering, the DNN model does not need to learn the time-invariant features; therefore, a simpler DNN model can be generated. In addition, the DNN model only learns the time-varying features of users in the same cluster; a more effective learning can be performed by the DNN and more accurate predictions can be achieved. The performance of the proposed fuzzy clustering-based DNN is evaluated by performing STLF, where both time-varying features and time-invariant features are included. Experimental results show that the proposed fuzzy clustering-based DNN outperforms the commonly used long short-term memory networks and convolution neural networks.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3