Prospective of Response Surface Methodology as an Optimization Tool for Biomass Gasification Process

Author:

Asaad Sara Maen,Inayat AbrarORCID,Rocha-Meneses LisandraORCID,Jamil Farrukh,Ghenai ChaoukiORCID,Shanableh AbdallahORCID

Abstract

The worldwide population growth and the technological advancements reported in the past few years have led to an increase in the production and consumption of energy. This has increased greenhouse gas (GHG) emissions, the primary driver of climate change. As a result, great attention has been paid to sustainable and green energy sources that can replace or reduce reliance on non-sustainable energy sources. Among the different types of renewable energy sources currently available, bioenergy has been reported as an attractive resource mainly due to its low cost and great availability. Bioenergy can be produced from different biomass sources and converted into biofuels or value-added products through thermochemical, biochemical, and chemical processes. Gasification is a thermochemical process commonly used for bioenergy production, and it is particularly attractive mainly due to its high efficiency. However, its performance is influenced by parameters such as type of feedstock, size of biomass particle, feed rate, type of reactor, temperature, pressure, equivalence ratio, steam to biomass ratio, gasification agent, catalyst, and residence time. In this paper, the influence of different performance parameters in the gasification process is analyzed, and optimization and modelling techniques are proposed as a strategy for product yield enhancement.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3