Block Caving Mining Method: Transformation and Its Potency in Indonesia

Author:

Melati Sari,Wattimena Ridho Kresna,Sahara David Prambudi,Syafrizal ORCID,Simangunsong Ganda Marihot,Hidayat Wahyu,Riyanto Erwin,Felisia Raden Roro Shinta

Abstract

The block caving mining method has become increasingly popular in the last two decades. Meanwhile, Indonesia has several potential ore bodies which have not yet determined suitable mining methods. The references to block caving mining projects worldwide and the potency of metal deposits in Indonesia were reviewed to determine the requirements of ore bodies suitable for mining using the transformed block caving method. This method can be applied on a blocky ore body with a thickness of 200–800 m, various rock mass strengths until 300 MPa, from low to high (from 0.3% Cu until more than 1.0% Cu), but of uniform grade and at a depth from 500 to 2200 m. The technical specifications for running block caving mines have been synthesized, including preparation methods, undercutting strategy, mine design, mining equipment and monitoring. Considering the requirements and the successful practice of the block caving project in the Grasberg Caving Complex as a role model, the Indonesian government should concentrate on the detailed exploration of porphyry deposits and feasibility studies on applying the method to the prospective ore bodies, i.e., Onto, Tambulilato, Tumpangpitu and Randu Kuning. In addition, the exploration method, cost, operation, environment, mining policy and social geology are important aspects worth noting.

Funder

Ministry of Education and Culture

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference171 articles.

1. Reichl, C., and Schatz, M. (2022). World Mining Data 2022. International Organizing Committee for the World Mining Congresses, Federal Ministry of Agriculture, Regions and Tourism.

2. Exploration: Safe and clean mining on Earth and asteroids;Dong;J. Clean. Prod.,2020

3. Spatio-temporal hierarchical cluster analysis of mining-induced seismicity in coal mines using Ward’s minimum variance method;Lurka;J. Appl. Geophys.,2021

4. Challenges of the polish coal mining industry on its way to innovative and sustainable development;Brodny;J. Clean. Prod.,2022

5. Underground Mining for Meeting Environmental Concerns–A Strategic Approach for Sustainable Mining in Future;Sahu;Procedia Earth Planet. Sci.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3