The Addition of a Small Dose of Cinnamomum camphora Biomass Unexpectedly Enhanced Lignocellulose Degradation during the Compost of Stropharia rugosoannulata Cultivation Materials

Author:

Zhou Hanchang12,Di Lan12,Hua Xiaoju2,Deng Tao2,Wang Xiaodong2

Affiliation:

1. Nanchang Urban Ecosystem Monitoring Station, Jiangxi Academy of Forestry, Nanchang 100085, China

2. Institute of Industrial Forestry, Jiangxi Academy of Forestry, Nanchang 100085, China

Abstract

This research explored the effects of the addition of low doses of aromatic plant biomasses (APBs) on the microbial community and carbon source decomposition in compost. APBs were reported to be capable of altering the composition and function of microbial communities in many environments. However, the effects of APB addition on the compost carbon source metabolism, a process highly linked to the microbial community of compost, were still unclarified, especially when added in small doses. In this study, Cinnamomum camphora biomass was added to the initial compost of Stropharia rugosoannulata cultivation materials, in a mass ratio of 0%, 1%, 2%, and 3%, respectively. The variation in the carbon source contents, the microbial community composition, and the related enzyme activities of the end compost products were measured. The results showed that Cinnamomum camphora biomass addition significantly altered the content of cellulose, hemicellulose, lignin, and protein of compost products, but did not affect the starch and soluble sugar content. Meanwhile, the addition significantly reduced lignin peroxidase and cellulase activities, but increased xylanase and laccase activities, and had no effect on magnesium peroxidase and polyphenol oxidase. Both the bacterial and fungal community compositions were significantly altered by the addition, though the alpha diversity indexes were not significantly changed. The relative abundance of Proteobacteria and Sordariomycetes was significantly increased by the addition, while Acidobacteria, Chloroflexi and Eurotiomycetes significantly decreased. Structural equation modeling found that the variation in the bacterial community composition (0.464 standard total effect) provided a higher contribution to lignocellulose degradation, rather than the fungal community (0.365 standard total effect). A co-occurrence network analysis further revealed that the trade-off between lignin peroxidase and laccase activity, which was induced by the relative abundance variation in Proteobacteria, Actinobacteriota, and Firmicute members, was the main driver in the lignocellulose decomposition variation. This research provides a new insight into the recycling of APB waste, and offers an improvement to mushroom cultivation material compost.

Funder

Jiangxi Science and Technology Department Major Science and Technology R&D Special Project

Jiangxi Forestry Bureau Special Project of Camphor Tree Research

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3