CO2 Adsorption Properties of Amine-Modified Zeolites Synthesized Using Different Types of Solid Waste

Author:

Li Shaojie1,Jia Shilong1,Nagasaka Tetsuya2ORCID,Bai Hao1,Yang Liyun12

Affiliation:

1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30# Xueyuan Road, Haidian District, Beijing 100083, China

2. Department of Metallurgy, Graduate School of Engineering, Tohoku University, 02 Aoba-yama, Sendai 980-8579, Japan

Abstract

In this study, organic amines were used to modify zeolite NaA and analcime synthesized using fly ash and iron tailing slag as raw materials, respectively, and the adsorption properties of the modified zeolites toward CO2 were determined. We found that when tetraethylenepentamine (TEPA) was used, the modified zeolite NaA and analcime had the highest nitrogen content. The adsorption capacity of the modified zeolite NaA for CO2 was 4.02 mmol/g and that of the modified analcime was 1.16 mmol/g when the adsorption temperature was 70 °C and the CO2 flow rate was 50 mL/min. According to the adsorption isotherm, kinetic, and thermodynamic model fitting, the adsorption surface of the modified zeolite was not uniform, and the CO2 adsorption of the modified zeolites was classified as chemical adsorption. In a mixed atmosphere of 15% CO2/85% N2, the dynamic selection coefficients of the modified zeolite NaA and analcime for CO2 were 3.8942 and 2.9509, respectively; thus, the two amine-modified zeolites had good selectivity for CO2. After five cycles, the adsorption efficiencies of the modified zeolite NaA and modified analcime for CO2 were 92.8% and 89%, respectively. Therefore, the two amine-modified zeolites showed good recycling performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3