Mathematical Modeling and Analysis of Capacitor Voltage Balancing for Power Converters with Fewer Switches

Author:

Alghaythi Mamdouh L.1ORCID,Irudayaraj Gerald Christopher Raj2,Ramu Senthil Kumar3ORCID,Govindaraj Praveenraj2ORCID,Vairavasundaram Indragandhi4ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

2. Department of Electrical and Electronics Engineering, PSNA College of Engineering and Technology, Dindigul 624622, Tamilnadu, India

3. School of Electrical Engineering, Vellore Institute of Technology, Chennai 600127, Tamilnadu, India

4. School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India

Abstract

The multilevel inverter (MLI) has been developed as a powerful power conversion scheme for several processes, including renewable energy, transmission systems, and electric drives. It has become popular across medium- to high-power operations due to its many advantages, including minimum harmonic content, low switching losses, and reduced electromagnetic interference (EMI). In this paper, the capacitor voltage balancing technique-based pulse width modulation (PWM) has been proposed. The proposed PWM strategy offers several advantages, such as high-quality output waveforms with reduced harmonic distortion, improved efficiency, and better control over the output voltage. The Xilinx ISE 10.1 software was used for synthesizing, and the VHDL code was written for the proposed method. MATLAB software was used to simulate and hardware was used to verify the proposed system. The SPARTAN 3E FPGA was used for the generation of the PWM. This paper developed a 2 kW single-phase 15-level inverter that created an AC wave from the DC input voltage, with a total harmonic distortion (THD) of 8.02%, which was less than the THD achieved from other conventional MLI. The results indicate that MLI topologies with low total harmonic currents, fewer switches, and higher output voltage levels are better stabilized during load disturbance circumstances.

Funder

Deputyship for Research & Innovation, Ministry of Education

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3