A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy

Author:

Alzahrani Ahmad,Ramu Senthil KumarORCID,Devarajan GunapriyaORCID,Vairavasundaram IndragandhiORCID,Vairavasundaram Subramaniyaswamy

Abstract

Hydrogen is acknowledged as a potential and appealing energy carrier for decarbonizing the sectors that contribute to global warming, such as power generation, industries, and transportation. Many people are interested in employing low-carbon sources of energy to produce hydrogen by using water electrolysis. Additionally, the intermittency of renewable energy supplies, such as wind and solar, makes electricity generation less predictable, potentially leading to power network incompatibilities. Hence, hydrogen generation and storage can offer a solution by enhancing system flexibility. Hydrogen saved as compressed gas could be turned back into energy or utilized as a feedstock for manufacturing, building heating, and automobile fuel. This work identified many hydrogen production strategies, storage methods, and energy management strategies in the hybrid microgrid (HMG). This paper discusses a case study of a HMG system that uses hydrogen as one of the main energy sources together with a solar panel and wind turbine (WT). The bidirectional AC-DC converter (BAC) is designed for HMGs to maintain power and voltage balance between the DC and AC grids. This study offers a control approach based on an analysis of the BAC’s main circuit that not only accomplishes the function of bidirectional power conversion, but also facilitates smooth renewable energy integration. While implementing the hydrogen-based HMG, the developed control technique reduces the reactive power in linear and non-linear (NL) loads by 90.3% and 89.4%.

Funder

Research Groups Funding program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3