A Vehicle Detection Method Based on an Improved U-YOLO Network for High-Resolution Remote-Sensing Images

Author:

Guo Dudu12,Wang Yang2,Zhu Shunying1,Li Xin2

Affiliation:

1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430070, China

2. College of Transportation Engineering, Xinjiang University, Urumqi 830046, China

Abstract

The lack of vehicle feature information and the limited number of pixels in high-definition remote-sensing images causes difficulties in vehicle detection. This paper proposes U-YOLO, a vehicle detection method that integrates multi-scale features, attention mechanisms, and sub-pixel convolution. The adaptive fusion module (AF) is added to the backbone of the YOLO detection model to increase the underlying structural information of the feature map. Cross-scale channel attention (CSCA) is introduced to the feature fusion part to obtain the vehicle’s explicit semantic information and further refine the feature map. The sub-pixel convolution module (SC) is used to replace the linear interpolation up-sampling of the original model, and the vehicle target feature map is enlarged to further improve the vehicle detection accuracy. The detection accuracies on the open-source datasets NWPU VHR-10 and DOTA were 91.35% and 71.38%. Compared with the original network model, the detection accuracy on these two datasets was increased by 6.89% and 4.94%, respectively. Compared with the classic target detection networks commonly used in RFBnet, M2det, and SSD300, the average accuracy rate values increased by 6.84%, 6.38%, and 12.41%, respectively. The proposed method effectively solves the problem of low vehicle detection accuracy. It provides an effective basis for promoting the application of high-definition remote-sensing images in traffic target detection and traffic flow parameter detection.

Funder

Xinjiang Autonomous Region key research and development project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3