Influence of Longitudinal Wind on Hydrogen Leakage and Hydrogen Concentration Sensor Layout of Fuel Cell Vehicles

Author:

Wang Xingmao1ORCID,Yi Fengyan1ORCID,Su Qingqing1ORCID,Zhou Jiaming2ORCID,Sun Yan1ORCID,Guo Wei1ORCID,Shu Xing1ORCID

Affiliation:

1. School of Automotive Engineering, Shandong Jiaotong University, Jinan 250357, China

2. School of Intelligent Manufacturing, Weifang University of Science and Technology, Weifang 262700, China

Abstract

Hydrogen has the physical and chemical characteristics of being flammable, explosive and prone to leakage, and its safety is the main issue faced by the promotion of hydrogen as an energy source. The most common scene in vehicle application is the longitudinal wind generated by driving, and the original position of hydrogen concentration sensors (HCSs) did not consider the influence of longitudinal wind on the hydrogen leakage trajectory. In this paper, the computational fluid dynamics (CFD) software STAR CCM 2021.1 is used to simulate the hydrogen leakage and diffusion trajectories of fuel cell vehicles (FCVs) at five different leakage locations the longitudinal wind speeds of 0 km/h, 37.18 km/h and 114 km/h, and it is concluded that longitudinal wind prolongs the diffusion time of hydrogen to the headspace and reduces the coverage area of hydrogen in the headspace with a decrease of 81.35%. In order to achieve a good detection effect of fuel cell vehicles within the longitudinal wind scene, based on the simulated hydrogen concentration–time matrix, the scene clustering method based on vector similarity evaluation was used to reduce the leakage scene set by 33%. Then, the layout position of HCSs was optimized according to the proposed multi-scene full coverage response time minimization model, and the response time was reduced from 5 s to 1 s.

Funder

Weifang University of Science and Technology High-level Talent Research Start-up Fund

Natural Science Foundation of Shandong Province

Shandong Jiaotong University Graduate Science and Technology Innovation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3