Regeneration Effect of a New Bio-Based Warm-Mix Rejuvenator on Performance and Micro-Morphology of Aged Asphalt

Author:

He Zhaoyi1,Yu Le1,You Shiyuan12,Li Maorong3ORCID,Kong Lin4,Wei Dingbang5

Affiliation:

1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. Chongqing City Construction Investment Group Co., Ltd., Chongqing 400023, China

3. National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China

4. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

5. Gansu Transport Planning, Survey and Design Institute Co., Ltd., Lanzhou 730030, China

Abstract

The use of warm-mix recycling technology can reduce the mixing temperature and the secondary aging of binders in reclaimed asphalt pavement (RAP), which is one of the effective ways to recycle high-content RAP. In this study, the penetration, softening point, ductility, and viscosity were used to characterize the conventional physical properties of aged asphalt after regenerating, while a dynamic shear rheometer (DSR), force ductility tester (FDT), and atomic force microscope (AFM) were used to evaluate the rheological performance and micro-morphology of aged asphalt incorporating a new bio-based warm-mix rejuvenator (BWR) and a commercial warm-mix rejuvenator (ZJ-WR). The regeneration mechanism of warm-mix rejuvenators on aged asphalt was analyzed by Fourier transform infrared spectroscopy (FTIR). The results show that the new bio-based warm-mix rejuvenator can restore the conventional physical properties, low-temperature performance, and micro-morphology of aged asphalt with an appropriate dosage, but it has a negative effect on high-temperature performance. In comparison with 2D area parameters, 3D roughness parameters were more accurate in evaluating the variation in micro-morphology of aged asphalt after regeneration. The FTIR analysis results indicate that both the new bio-based warm-mix rejuvenator and the commercial warm-mix rejuvenator regenerate aged asphalt by physical action, and AS=O and AC-H values are more reasonable than the AC=O value for the restoration evaluation of aged asphalt. And the new bio-based warm-mix rejuvenator has a better regeneration effect on the performance and micro-morphology of aged asphalt than the commercial warm-mix rejuvenator.

Funder

National Natural Science Foundation of China

Gansu Science and Technology Major Project

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3