Quantitative Evaluation of Blending Behavior between Virgin Asphalt and Aged Asphalt Incorporating a New Bio-Based Warm-Mix Rejuvenator

Author:

Yu Le1,You Shiyuan12,He Zhaoyi13,Wei Dingbang45,Kong Lin6

Affiliation:

1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. Chongqing City Construction Investment Group Co., Ltd., Chongqing 400023, China

3. National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China

4. Gansu Transport Planning, Survey and Design Institute Co., Ltd., Lanzhou 730030, China

5. Gansu Province Highway Traffic Construction Group Co., Ltd., Lanzhou 730030, China

6. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

The blending degree between virgin asphalt and aged asphalt has a significant effect on road performance of reclaimed asphalt mixture. This study presented an innovative examination of blending behavior between virgin asphalt and aged asphalt incorporating a new bio-based warm-mix rejuvenator (BWR) by utilizing Atomic Force Microscopy (AFM). Through analyzing the variation of several micro-morphology parameters between virgin asphalt and aged asphalt (or recycled asphalt) after blending, an index of regenerative blending degree (RBD) was proposed to quantitatively evaluate their blending behavior, and the effect of various blending temperatures and durations on regenerative blending degree was investigated. The results show that the regenerative blending degree between virgin asphalt and aged asphalt was higher than that between virgin asphalt and recycled asphalt under the same blending condition. A clear linear correlation was observed between the regenerative blending degree calculated by 3D micro-morphology parameters and the dosage of bio-based warm-mix rejuvenator in recycled asphalt, with a correlation coefficient of 0.98. With the increase in blending duration, the regenerative blending degree between virgin asphalt and recycled asphalt increased first and then decreased, but continued to improve with the increase in blending temperature, which indicates that a higher blending temperature and prolonging the blending duration properly have a positive effect on the blending processing between virgin asphalt and recycled asphalt. Compared with the regenerative blending degree calculated by 2D micro-morphology parameters, the regenerative blending degree calculated by 3D micro-morphology parameters is more reasonable to quantify the blending behavior between virgin asphalt and recycled asphalt.

Funder

National Natural Science Foundation of China

Gansu Science and Technology Major Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3