Improving the Abrasion Resistance of Nodular Cast Iron Castings by Remelting Their Surfaces by Laser Beam

Author:

Wróbel Tomasz1ORCID,Studnicki Andrzej1,Stawarz Marcin1ORCID,Baron Czesław1ORCID,Jezierski Jan1ORCID,Bartocha Dariusz1ORCID,Dojka Rafał2ORCID,Opiela Jacek2,Lisiecki Aleksander3ORCID

Affiliation:

1. Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa Street, 44-100 Gliwice, Poland

2. Odlewnia, “RAFAMET” Sp. z o.o., 1 Staszica Street, 47-420 Kuźnia Raciborska, Poland

3. Department of Welding Engineering, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland

Abstract

This paper presents the results of research conducted in the field of the technology of surface hardening of castings from unalloyed and low-alloy nodular cast iron using the laser remelting method. The range of studies included macro- and microhardness measurements using Rockwell and Vickers methods as well as metallographic microscopic examinations using a scanning electron microscope. Moreover, abrasive wear resistance tests were performed using the pin-on-disk method in the friction pair of nodular cast iron—SiC abrasive paper and the reciprocating method in the friction pair of nodular cast iron—unalloyed steel. Analysis of the test results shows that the casting surface layer remelting by laser for unalloyed nodular cast iron results in a greater improvement in its resistance to abrasive wear in the metal–mineral system, as compared to low-alloy cast iron. Additionally, carrying out the laser hardening treatment of the surface layer made of the tested grades of nodular cast iron is justified only if the tribological system of the cooperating working parts and allowable dimensional changes during their operation are known.

Funder

NCBiR

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3