Abstract
Climate change and overpopulation have led to an increase in water demands worldwide. As a result, land subsidence due to groundwater extraction and water level decline is causing damage to communities in arid and semiarid regions. The agricultural plain of Samalghan in Iran has recently experienced wide areas of land subsidence, which is hypothesized to be caused by groundwater overexploitation. This hypothesis was assessed by estimating the amount of subsidence that occurred in the Samalghan plain using DInSAR based on an analysis of 25 Sentinel-1 descending SAR images over 6 years. To assess the influence of water level changes on this phenomenon, groundwater level maps were produced, and their relationship with land subsidence was evaluated. Results showed that one major cause of the subsidence in the Samalghan plain was groundwater overexploitation, with the highest average land subsidence occurring in 2019 (34 cm) and the lowest in 2015 and 2018 (18 cm). Twelve Sentinel-1 ascending images were used for relative validation of the DInSAR processing. The correlation value varied from 0.69 to 0.89 (an acceptable range). Finally, the aquifer behavior was studied, and changes in cultivation patterns and optimal utilization of groundwater resources were suggested as practical strategies to control the current situation.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献