Radar Interferometry for Sustainable Groundwater Use: Detecting Subsidence and Sinkholes in Kabodarahang Plain

Author:

Mohammadhasani Mohammad1,Rashidi Ahmad2ORCID,Sheikh Shariati Kermani Behnaz3,Nemati Majid24ORCID,Derakhshani Reza45ORCID

Affiliation:

1. Building-Housing and Road Research Center (BHRC), Department of Seismology Engineering and Risk, Tehran 14639-17151, Iran

2. Department of Earthquake Research, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran

3. Department of Geography and Urban Planning, Yazd University, Yazd 8915818411, Iran

4. Department of Geology, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran

5. Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands

Abstract

This study investigates the consequences of unsustainable groundwater extraction in the Kabodarahang plain, a region significantly impacted by geohazards, such as land subsidence and sinkhole formation due to excessive groundwater use for agricultural and industrial activities. Over 32 years (1990–2022), a dramatic decrease in groundwater levels by approximately ~41 m has been observed, leading to notable geohazards. Employing radar interferometry techniques with Sentinel-1 satellite radar imagery and the Sentinel Application Platform (SNAP) tool, complemented by field data, this research aims to quantify the rate of subsidence and evaluate the associated risks, particularly in urban and residential zones. Findings from 2017 to 2018 indicate a subsidence rate of 14.5 cm, predominantly in urban areas, thereby elevating the risk of this geohazard. The results underscore the critical need for sustainable groundwater management policies and practices. The study demonstrates the effectiveness of radar interferometry in monitoring subsidence in the Kabodarahang plain and suggests that integrating such techniques with field surveys and satellite data can enhance the detection and management of risks related to unsustainable groundwater usage. This research contributes to the understanding of the impacts of groundwater depletion on geohazards and supports the development of strategies for sustainable groundwater use to mitigate such risks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3