Comparison of Disinfection By-Product Formation and Distribution during Breakpoint Chlorination and Chlorine-Based Disinfection in Drinking Water

Author:

Stefán Dávid,Balogh Judit,Záray GyulaORCID,Vargha Márta

Abstract

Breakpoint chlorination (BC) and disinfection with chlorine-based disinfectant are widely used procedures in drinking water production. Both involve dosing chlorine into the raw water, where it can react with organic compounds, forming disinfection by-products (DBPs) of health concern. However, technological parameters (e.g., contact time, chlorine dosage, and bromide to residual free chlorine ratio) of the two chlorination procedures are different, which can lead to differences in DBP formation. To better understand this, a year-long sampling campaign was carried out at three waterworks in Hungary, where both BC and chlorine disinfection are used. To confirm the results of the field sampling, bench-scale experiments were carried out, investigating the impact of (a) bromide concentration in raw water, (b) residual free chlorine (bromide to residual chlorine ratio), and (c) contact time on DBP formation. The measured DBPs were trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and chlorate. During BC, the DBPs were formed in higher concentration, with the exception of one waterwork having elevated bromide content in the raw water. Bromine substitution factors (BSFs) were significantly higher during disinfection than BC in both field and laboratory experiments. After BC, the chlorate concentration range was 0.15–1.1 mg/L, and 96% of the samples exceeded the European Union (EU) parametric value (0.25 mg/L), whereas disinfection contributed only slightly. Granular activated carbon (GAC) filters used to remove DBPs in waterworks were exhausted after 6–8 months of use, first for those chlorinated THMs, which are generated predominantly during BC. The biological activity of the filters started to increase after 3–6 months of operation. This activity helps to remove the biodegradable compounds, such as disubstituted haloacetic acid (DHAAs) and HANs, even if the adsorption capacity of the GAC filters are low.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3