Optimization of Breakpoint Chlorination Technologies for Drinking Water Treatment: a Hungarian Case Study

Author:

Laky Dóra,Neguez Souha

Abstract

Ammonium ion is one of the major pollutants found in drinking water sources in Hungary, especially in deep aquifers. under oxidative conditions, ammonium can transform into nitrite ions in the water system, posing potential health risks. In Hungary mostly biological process or breakpoint chlorination are used to eliminate ammonium ion from raw water during the drinking water treatment process. When breakpoint chlorination is applied, harmful by-products are formed. Trihalomethanes concentrations have long been regulated in Hungary, therefore during the design and optimization of the breakpoint technologies trihalomethane concentrations have been considered. However, haloacetic acids (HAA5) and chlorate ion have been recently regulated in accordance with EU Directive 2020/2184. Chlorate is a by-product that appears in treated water when sodium hypochlorite is used in breakpoint chlorination.Experiments were carried out at four Hungarian case study areas to determine the optimal strategy for breakpoint chlorination: applying higher chlorine dosages with lower contact times, or lower chlorine dosages with higher contact times. The investigations concluded that the preferable dosing strategy is to use lower chlorine concentrations and longer contact times. This approach reduces chemical demand (cost-effective) and has a neutral effect on THMs formation. it can be concluded that when the raw water contains ammonium ion concentrations above 0.5 mg/l, the use of sodium hypochlorite may raise concerns due to elevated chlorate ion levels in the treated water, particularly during summer. Further research is required to expand the optimization strategy, considering not only ammonium and trihalomethane concentrations but also chlorate concentrations.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3