N-Graphene Sheet Stacks/Cu Electrocatalyst for CO2 Reduction to Ethylene

Author:

Lesnicenoks Peteris,Knoks AinarsORCID,Piskunov Sergei,Jekabsons Laimonis,Kleperis JanisORCID

Abstract

Renewable energy resources (wind, solar) are unpredictable, so it is wise to store the electricity they generate in an energy carrier X. Various PtX (power to useful energy-intensive raw material such as hydrogen, synthetic natural gas, fuel) applications have been proposed. At the heart of our work is widely used idea to convert residual CO2 from biogas plant into higher hydrocarbons using electricity from renewables (e.g., sun, wind, hydro). The specific goal is to produce ethylene-highly demanded hydrocarbon in plastics industry. The process itself is realised on electrocatalytic carbon/copper cathode which must be selective to reaction: 2CO2 + 12e− + 12H+→C2H4 + 4H2O. We propose a bottom-up approach to build catalyst from the smallest particles-graphene sheet stacks (GSS) coated with metallic copper nanocrystals. Composite GSS-Cu structure functions as a CO2 and proton absorber, facilitating hydrogenation and carbon–carbon coupling reactions on Cu-nanocluster/GSS for the formation of C2H4. In our design electrocatalytic electrode is made from nitrogen-doped graphene sheet stacks coated with copper nanostructures. The N-GSSitself can be drop-casted or electrophoretically incorporated onto the carbon paper and gas diffusion electrode. Electrochemical deposition method was recognized as successful and most promising to grow Cu nanocrystals on N-GSS incorporated in conducting carbon substrate. Gaseous products from CO2 electro-catalytic reformation on the cathode were investigated by mass-spectrometer but the electrode surface was analysed by SEM/EDS and XRD methods.

Publisher

MDPI AG

Subject

Psychiatry and Mental health,Health Policy,Neuropsychology and Physiological Psychology

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3