Electrochemical Reduction of CO2: Overcoming Chemical Inertness at Ambient Conditions

Author:

Perez Ana Cristina,Diaz-Perez Manuel AntonioORCID,Serrano-Ruiz Juan CarlosORCID

Abstract

Electroreduction allows for the transformation of a chemically inert molecule such as CO2 into a wide variety of useful carbon products. Unlike other approaches operating at higher temperatures, electrochemical reduction holds great promise since it achieves reduction under ambient conditions, thereby providing more control over the reaction selectivity. By controlling basic parameters such as the potential and the composition of the electrode, CO2 can be transformed into a variety of products including carbon monoxide, syngas (CO/H2), methane, and methanol. This reduction process takes place without external hydrogen, since water can be used as a source of both electrons and protons. Furthermore, this technology, when combined with renewable wind- or solar-derived electricity, has the potential to serve as a storage system for excess electricity. Despite these advantages, a number of challenges need to be overcome before reaching commercialization. New (and cheaper) electrocatalyst formulations with high faradaic selectivities are required. Impressive progress has been made on carbon-doped materials, which, in certain cases, have outperformed expensive noble metal-based materials. Research is also needed on new electrochemical reactor configurations able to overcome kinetic/mass transport limitations, which are crucial to reduce overpotentials. Fine control over the nature of the active sites and the reaction conditions is important to avoid parasitic reactions such as the hydrogen evolution reaction (HER), and therefore increases the faradaic efficiency towards the desired products.

Funder

Ministry of Science

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3